Metamath Proof Explorer


Theorem linecom

Description: Commutativity law for lines. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linecom N P 𝔼 N Q 𝔼 N P Q P Line Q = Q Line P

Proof

Step Hyp Ref Expression
1 simp1 N P 𝔼 N Q 𝔼 N P Q x 𝔼 N N
2 simp3 N P 𝔼 N Q 𝔼 N P Q x 𝔼 N x 𝔼 N
3 simp21 N P 𝔼 N Q 𝔼 N P Q x 𝔼 N P 𝔼 N
4 simp22 N P 𝔼 N Q 𝔼 N P Q x 𝔼 N Q 𝔼 N
5 colinearperm1 N x 𝔼 N P 𝔼 N Q 𝔼 N x Colinear P Q x Colinear Q P
6 1 2 3 4 5 syl13anc N P 𝔼 N Q 𝔼 N P Q x 𝔼 N x Colinear P Q x Colinear Q P
7 6 3expa N P 𝔼 N Q 𝔼 N P Q x 𝔼 N x Colinear P Q x Colinear Q P
8 7 rabbidva N P 𝔼 N Q 𝔼 N P Q x 𝔼 N | x Colinear P Q = x 𝔼 N | x Colinear Q P
9 fvline2 N P 𝔼 N Q 𝔼 N P Q P Line Q = x 𝔼 N | x Colinear P Q
10 necom P Q Q P
11 10 3anbi3i P 𝔼 N Q 𝔼 N P Q P 𝔼 N Q 𝔼 N Q P
12 3ancoma P 𝔼 N Q 𝔼 N Q P Q 𝔼 N P 𝔼 N Q P
13 11 12 bitri P 𝔼 N Q 𝔼 N P Q Q 𝔼 N P 𝔼 N Q P
14 fvline2 N Q 𝔼 N P 𝔼 N Q P Q Line P = x 𝔼 N | x Colinear Q P
15 13 14 sylan2b N P 𝔼 N Q 𝔼 N P Q Q Line P = x 𝔼 N | x Colinear Q P
16 8 9 15 3eqtr4d N P 𝔼 N Q 𝔼 N P Q P Line Q = Q Line P