Metamath Proof Explorer


Theorem lkrshpor

Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses lkrshpor.v V=BaseW
lkrshpor.h H=LSHypW
lkrshpor.f F=LFnlW
lkrshpor.k K=LKerW
lkrshpor.w φWLVec
lkrshpor.g φGF
Assertion lkrshpor φKGHKG=V

Proof

Step Hyp Ref Expression
1 lkrshpor.v V=BaseW
2 lkrshpor.h H=LSHypW
3 lkrshpor.f F=LFnlW
4 lkrshpor.k K=LKerW
5 lkrshpor.w φWLVec
6 lkrshpor.g φGF
7 lveclmod WLVecWLMod
8 5 7 syl φWLMod
9 eqid ScalarW=ScalarW
10 eqid 0ScalarW=0ScalarW
11 9 10 1 3 4 lkr0f WLModGFKG=VG=V×0ScalarW
12 8 6 11 syl2anc φKG=VG=V×0ScalarW
13 12 biimpar φG=V×0ScalarWKG=V
14 13 olcd φG=V×0ScalarWKGHKG=V
15 5 adantr φGV×0ScalarWWLVec
16 6 adantr φGV×0ScalarWGF
17 simpr φGV×0ScalarWGV×0ScalarW
18 1 9 10 2 3 4 lkrshp WLVecGFGV×0ScalarWKGH
19 15 16 17 18 syl3anc φGV×0ScalarWKGH
20 19 orcd φGV×0ScalarWKGHKG=V
21 14 20 pm2.61dane φKGHKG=V