Metamath Proof Explorer


Theorem llncmp

Description: If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012)

Ref Expression
Hypotheses llncmp.l ˙=K
llncmp.n N=LLinesK
Assertion llncmp KHLXNYNX˙YX=Y

Proof

Step Hyp Ref Expression
1 llncmp.l ˙=K
2 llncmp.n N=LLinesK
3 simp2 KHLXNYNXN
4 simp1 KHLXNYNKHL
5 eqid BaseK=BaseK
6 5 2 llnbase XNXBaseK
7 6 3ad2ant2 KHLXNYNXBaseK
8 eqid K=K
9 eqid AtomsK=AtomsK
10 5 8 9 2 islln4 KHLXBaseKXNpAtomsKpKX
11 4 7 10 syl2anc KHLXNYNXNpAtomsKpKX
12 3 11 mpbid KHLXNYNpAtomsKpKX
13 simpr3 KHLXNYNpAtomsKpKXX˙YX˙Y
14 hlpos KHLKPoset
15 14 3ad2ant1 KHLXNYNKPoset
16 15 adantr KHLXNYNpAtomsKpKXX˙YKPoset
17 7 adantr KHLXNYNpAtomsKpKXX˙YXBaseK
18 simpl3 KHLXNYNpAtomsKpKXX˙YYN
19 5 2 llnbase YNYBaseK
20 18 19 syl KHLXNYNpAtomsKpKXX˙YYBaseK
21 simpr1 KHLXNYNpAtomsKpKXX˙YpAtomsK
22 5 9 atbase pAtomsKpBaseK
23 21 22 syl KHLXNYNpAtomsKpKXX˙YpBaseK
24 simpr2 KHLXNYNpAtomsKpKXX˙YpKX
25 simpl1 KHLXNYNpAtomsKpKXX˙YKHL
26 5 1 8 cvrle KHLpBaseKXBaseKpKXp˙X
27 25 23 17 24 26 syl31anc KHLXNYNpAtomsKpKXX˙Yp˙X
28 5 1 postr KPosetpBaseKXBaseKYBaseKp˙XX˙Yp˙Y
29 16 23 17 20 28 syl13anc KHLXNYNpAtomsKpKXX˙Yp˙XX˙Yp˙Y
30 27 13 29 mp2and KHLXNYNpAtomsKpKXX˙Yp˙Y
31 1 8 9 2 atcvrlln2 KHLpAtomsKYNp˙YpKY
32 25 21 18 30 31 syl31anc KHLXNYNpAtomsKpKXX˙YpKY
33 5 1 8 cvrcmp KPosetXBaseKYBaseKpBaseKpKXpKYX˙YX=Y
34 16 17 20 23 24 32 33 syl132anc KHLXNYNpAtomsKpKXX˙YX˙YX=Y
35 13 34 mpbid KHLXNYNpAtomsKpKXX˙YX=Y
36 35 3exp2 KHLXNYNpAtomsKpKXX˙YX=Y
37 36 rexlimdv KHLXNYNpAtomsKpKXX˙YX=Y
38 12 37 mpd KHLXNYNX˙YX=Y
39 5 1 posref KPosetXBaseKX˙X
40 15 7 39 syl2anc KHLXNYNX˙X
41 breq2 X=YX˙XX˙Y
42 40 41 syl5ibcom KHLXNYNX=YX˙Y
43 38 42 impbid KHLXNYNX˙YX=Y