Metamath Proof Explorer


Theorem llnmlplnN

Description: The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses llnmlpln.l ˙=K
llnmlpln.m ˙=meetK
llnmlpln.z 0˙=0.K
llnmlpln.a A=AtomsK
llnmlpln.n N=LLinesK
llnmlpln.p P=LPlanesK
Assertion llnmlplnN KHLXNYP¬X˙YX˙Y0˙X˙YA

Proof

Step Hyp Ref Expression
1 llnmlpln.l ˙=K
2 llnmlpln.m ˙=meetK
3 llnmlpln.z 0˙=0.K
4 llnmlpln.a A=AtomsK
5 llnmlpln.n N=LLinesK
6 llnmlpln.p P=LPlanesK
7 simprl KHLXNYP¬X˙YX˙Y0˙¬X˙Y
8 simp11 KHLXNYP¬X˙YX˙Y0˙¬X˙YAKHL
9 8 hllatd KHLXNYP¬X˙YX˙Y0˙¬X˙YAKLat
10 simp12 KHLXNYP¬X˙YX˙Y0˙¬X˙YAXN
11 eqid BaseK=BaseK
12 11 5 llnbase XNXBaseK
13 10 12 syl KHLXNYP¬X˙YX˙Y0˙¬X˙YAXBaseK
14 simp13 KHLXNYP¬X˙YX˙Y0˙¬X˙YAYP
15 11 6 lplnbase YPYBaseK
16 14 15 syl KHLXNYP¬X˙YX˙Y0˙¬X˙YAYBaseK
17 11 2 latmcl KLatXBaseKYBaseKX˙YBaseK
18 9 13 16 17 syl3anc KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙YBaseK
19 simp2r KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙Y0˙
20 simp3 KHLXNYP¬X˙YX˙Y0˙¬X˙YA¬X˙YA
21 11 1 3 4 5 llnle KHLX˙YBaseKX˙Y0˙¬X˙YAuNu˙X˙Y
22 8 18 19 20 21 syl22anc KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙Y
23 9 adantr KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YKLat
24 18 adantr KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YX˙YBaseK
25 13 adantr KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YXBaseK
26 11 1 2 latmle1 KLatXBaseKYBaseKX˙Y˙X
27 9 13 16 26 syl3anc KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙Y˙X
28 27 adantr KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YX˙Y˙X
29 11 5 llnbase uNuBaseK
30 29 ad2antrl KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YuBaseK
31 simprr KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙Yu˙X˙Y
32 11 1 23 30 24 25 31 28 lattrd KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙Yu˙X
33 simpl11 KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YKHL
34 simprl KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YuN
35 simpl12 KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YXN
36 1 5 llncmp KHLuNXNu˙Xu=X
37 33 34 35 36 syl3anc KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙Yu˙Xu=X
38 32 37 mpbid KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙Yu=X
39 38 31 eqbrtrrd KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YX˙X˙Y
40 11 1 23 24 25 28 39 latasymd KHLXNYP¬X˙YX˙Y0˙¬X˙YAuNu˙X˙YX˙Y=X
41 22 40 rexlimddv KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙Y=X
42 11 1 2 latleeqm1 KLatXBaseKYBaseKX˙YX˙Y=X
43 9 13 16 42 syl3anc KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙YX˙Y=X
44 41 43 mpbird KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙Y
45 44 3expia KHLXNYP¬X˙YX˙Y0˙¬X˙YAX˙Y
46 7 45 mt3d KHLXNYP¬X˙YX˙Y0˙X˙YA