Metamath Proof Explorer


Theorem llynlly

Description: A locally A space is n-locally A : the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llynlly JLocally A JN-Locally A

Proof

Step Hyp Ref Expression
1 llytop JLocally A JTop
2 llyi JLocally A xJ yx uJuxyuJ𝑡uA
3 simpl1 JLocally A xJ yx uJuxyuJ𝑡uA JLocally A
4 3 1 syl JLocally A xJ yx uJuxyuJ𝑡uA JTop
5 simprl JLocally A xJ yx uJuxyuJ𝑡uA uJ
6 simprr2 JLocally A xJ yx uJuxyuJ𝑡uA yu
7 opnneip JTopuJyuuneiJy
8 4 5 6 7 syl3anc JLocally A xJ yx uJuxyuJ𝑡uA uneiJy
9 simprr1 JLocally A xJ yx uJuxyuJ𝑡uA ux
10 velpw u𝒫xux
11 9 10 sylibr JLocally A xJ yx uJuxyuJ𝑡uA u𝒫x
12 8 11 elind JLocally A xJ yx uJuxyuJ𝑡uA uneiJy𝒫x
13 simprr3 JLocally A xJ yx uJuxyuJ𝑡uA J𝑡uA
14 2 12 13 reximssdv JLocally A xJ yx uneiJy𝒫xJ𝑡uA
15 14 3expb JLocally A xJyx uneiJy𝒫xJ𝑡uA
16 15 ralrimivva JLocally A xJyxuneiJy𝒫xJ𝑡uA
17 isnlly JN-Locally A JTopxJyxuneiJy𝒫xJ𝑡uA
18 1 16 17 sylanbrc JLocally A JN-Locally A