Metamath Proof Explorer


Theorem lmat22det

Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020)

Ref Expression
Hypotheses lmat22.m M = litMat ⟨“ ⟨“ AB ”⟩ ⟨“ CD ”⟩ ”⟩
lmat22.a φ A V
lmat22.b φ B V
lmat22.c φ C V
lmat22.d φ D V
lmat22det.t · ˙ = R
lmat22det.s - ˙ = - R
lmat22det.v V = Base R
lmat22det.j J = 1 2 maDet R
lmat22det.r φ R Ring
Assertion lmat22det φ J M = A · ˙ D - ˙ C · ˙ B

Proof

Step Hyp Ref Expression
1 lmat22.m M = litMat ⟨“ ⟨“ AB ”⟩ ⟨“ CD ”⟩ ”⟩
2 lmat22.a φ A V
3 lmat22.b φ B V
4 lmat22.c φ C V
5 lmat22.d φ D V
6 lmat22det.t · ˙ = R
7 lmat22det.s - ˙ = - R
8 lmat22det.v V = Base R
9 lmat22det.j J = 1 2 maDet R
10 lmat22det.r φ R Ring
11 2nn 2
12 11 a1i φ 2
13 2 3 s2cld φ ⟨“ AB ”⟩ Word V
14 4 5 s2cld φ ⟨“ CD ”⟩ Word V
15 13 14 s2cld φ ⟨“ ⟨“ AB ”⟩ ⟨“ CD ”⟩ ”⟩ Word Word V
16 s2len ⟨“ ⟨“ AB ”⟩ ⟨“ CD ”⟩ ”⟩ = 2
17 16 a1i φ ⟨“ ⟨“ AB ”⟩ ⟨“ CD ”⟩ ”⟩ = 2
18 1 2 3 4 5 lmat22lem φ i 0 ..^ 2 ⟨“ ⟨“ AB ”⟩ ⟨“ CD ”⟩ ”⟩ i = 2
19 eqid 1 2 Mat R = 1 2 Mat R
20 eqid Base 1 2 Mat R = Base 1 2 Mat R
21 1 12 15 17 18 8 19 20 10 lmatcl φ M Base 1 2 Mat R
22 2z 2
23 fzval3 2 1 2 = 1 ..^ 2 + 1
24 22 23 ax-mp 1 2 = 1 ..^ 2 + 1
25 2p1e3 2 + 1 = 3
26 25 oveq2i 1 ..^ 2 + 1 = 1 ..^ 3
27 fzo13pr 1 ..^ 3 = 1 2
28 24 26 27 3eqtri 1 2 = 1 2
29 28 9 19 20 7 6 m2detleib R Ring M Base 1 2 Mat R J M = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2
30 10 21 29 syl2anc φ J M = 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2
31 1 2 3 4 5 lmat22e11 φ 1 M 1 = A
32 1 2 3 4 5 lmat22e22 φ 2 M 2 = D
33 31 32 oveq12d φ 1 M 1 · ˙ 2 M 2 = A · ˙ D
34 1 2 3 4 5 lmat22e21 φ 2 M 1 = C
35 1 2 3 4 5 lmat22e12 φ 1 M 2 = B
36 34 35 oveq12d φ 2 M 1 · ˙ 1 M 2 = C · ˙ B
37 33 36 oveq12d φ 1 M 1 · ˙ 2 M 2 - ˙ 2 M 1 · ˙ 1 M 2 = A · ˙ D - ˙ C · ˙ B
38 30 37 eqtrd φ J M = A · ˙ D - ˙ C · ˙ B