Metamath Proof Explorer


Theorem lmiclbs

Description: Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lmimlbs.j J=LBasisS
lmimlbs.k K=LBasisT
Assertion lmiclbs S𝑚TJK

Proof

Step Hyp Ref Expression
1 lmimlbs.j J=LBasisS
2 lmimlbs.k K=LBasisT
3 brlmic S𝑚TSLMIsoT
4 n0 SLMIsoTffSLMIsoT
5 3 4 bitri S𝑚TffSLMIsoT
6 n0 JbbJ
7 1 2 lmimlbs fSLMIsoTbJfbK
8 7 ne0d fSLMIsoTbJK
9 8 ex fSLMIsoTbJK
10 9 exlimdv fSLMIsoTbbJK
11 6 10 biimtrid fSLMIsoTJK
12 11 exlimiv ffSLMIsoTJK
13 5 12 sylbi S𝑚TJK