Metamath Proof Explorer


Theorem lmicrcl

Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmicrcl R𝑚SSLMod

Proof

Step Hyp Ref Expression
1 brlmic R𝑚SRLMIsoS
2 n0 RLMIsoSffRLMIsoS
3 1 2 bitri R𝑚SffRLMIsoS
4 lmimlmhm fRLMIsoSfRLMHomS
5 lmhmlmod2 fRLMHomSSLMod
6 4 5 syl fRLMIsoSSLMod
7 6 exlimiv ffRLMIsoSSLMod
8 3 7 sylbi R𝑚SSLMod