Metamath Proof Explorer


Theorem lmimgim

Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmimgim FRLMIsoSFRGrpIsoS

Proof

Step Hyp Ref Expression
1 lmimlmhm FRLMIsoSFRLMHomS
2 lmghm FRLMHomSFRGrpHomS
3 1 2 syl FRLMIsoSFRGrpHomS
4 eqid BaseR=BaseR
5 eqid BaseS=BaseS
6 4 5 lmimf1o FRLMIsoSF:BaseR1-1 ontoBaseS
7 4 5 isgim FRGrpIsoSFRGrpHomSF:BaseR1-1 ontoBaseS
8 3 6 7 sylanbrc FRLMIsoSFRGrpIsoS