Metamath Proof Explorer


Theorem lmmcvg

Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J=MetOpenD
lmmbr.3 φD∞MetX
lmmbr3.5 Z=M
lmmbr3.6 φM
lmmbrf.7 φkZFk=A
lmmcvg.8 φFtJP
lmmcvg.9 φR+
Assertion lmmcvg φjZkjAXADP<R

Proof

Step Hyp Ref Expression
1 lmmbr.2 J=MetOpenD
2 lmmbr.3 φD∞MetX
3 lmmbr3.5 Z=M
4 lmmbr3.6 φM
5 lmmbrf.7 φkZFk=A
6 lmmcvg.8 φFtJP
7 lmmcvg.9 φR+
8 breq2 x=RFkDP<xFkDP<R
9 8 3anbi3d x=RkdomFFkXFkDP<xkdomFFkXFkDP<R
10 9 rexralbidv x=RjZkjkdomFFkXFkDP<xjZkjkdomFFkXFkDP<R
11 1 2 3 4 lmmbr3 φFtJPFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x
12 6 11 mpbid φFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x
13 12 simp3d φx+jZkjkdomFFkXFkDP<x
14 10 13 7 rspcdva φjZkjkdomFFkXFkDP<R
15 3 uztrn2 jZkjkZ
16 3simpc kdomFFkXFkDP<RFkXFkDP<R
17 5 eleq1d φkZFkXAX
18 5 oveq1d φkZFkDP=ADP
19 18 breq1d φkZFkDP<RADP<R
20 17 19 anbi12d φkZFkXFkDP<RAXADP<R
21 16 20 imbitrid φkZkdomFFkXFkDP<RAXADP<R
22 15 21 sylan2 φjZkjkdomFFkXFkDP<RAXADP<R
23 22 anassrs φjZkjkdomFFkXFkDP<RAXADP<R
24 23 ralimdva φjZkjkdomFFkXFkDP<RkjAXADP<R
25 24 reximdva φjZkjkdomFFkXFkDP<RjZkjAXADP<R
26 14 25 mpd φjZkjAXADP<R