Metamath Proof Explorer


Theorem lmodindp1

Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015)

Ref Expression
Hypotheses lmodindp1.v V=BaseW
lmodindp1.p +˙=+W
lmodindp1.o 0˙=0W
lmodindp1.n N=LSpanW
lmodindp1.w φWLMod
lmodindp1.x φXV
lmodindp1.y φYV
lmodindp1.q φNXNY
Assertion lmodindp1 φX+˙Y0˙

Proof

Step Hyp Ref Expression
1 lmodindp1.v V=BaseW
2 lmodindp1.p +˙=+W
3 lmodindp1.o 0˙=0W
4 lmodindp1.n N=LSpanW
5 lmodindp1.w φWLMod
6 lmodindp1.x φXV
7 lmodindp1.y φYV
8 lmodindp1.q φNXNY
9 eqid invgW=invgW
10 1 9 4 lspsnneg WLModXVNinvgWX=NX
11 5 6 10 syl2anc φNinvgWX=NX
12 11 eqcomd φNX=NinvgWX
13 12 adantr φX+˙Y=0˙NX=NinvgWX
14 lmodgrp WLModWGrp
15 5 14 syl φWGrp
16 1 2 3 9 grpinvid1 WGrpXVYVinvgWX=YX+˙Y=0˙
17 15 6 7 16 syl3anc φinvgWX=YX+˙Y=0˙
18 17 biimpar φX+˙Y=0˙invgWX=Y
19 18 sneqd φX+˙Y=0˙invgWX=Y
20 19 fveq2d φX+˙Y=0˙NinvgWX=NY
21 13 20 eqtrd φX+˙Y=0˙NX=NY
22 21 ex φX+˙Y=0˙NX=NY
23 22 necon3d φNXNYX+˙Y0˙
24 8 23 mpd φX+˙Y0˙