Metamath Proof Explorer


Theorem lmres

Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Hypotheses lmres.2 φJTopOnX
lmres.4 φFX𝑝𝑚
lmres.5 φM
Assertion lmres φFtJPFMtJP

Proof

Step Hyp Ref Expression
1 lmres.2 φJTopOnX
2 lmres.4 φFX𝑝𝑚
3 lmres.5 φM
4 toponmax JTopOnXXJ
5 1 4 syl φXJ
6 cnex V
7 ssid XX
8 uzssz M
9 zsscn
10 8 9 sstri M
11 pmss12g XXMXJVX𝑝𝑚MX𝑝𝑚
12 7 10 11 mpanl12 XJVX𝑝𝑚MX𝑝𝑚
13 5 6 12 sylancl φX𝑝𝑚MX𝑝𝑚
14 fvex MV
15 pmresg MVFX𝑝𝑚FMX𝑝𝑚M
16 14 2 15 sylancr φFMX𝑝𝑚M
17 13 16 sseldd φFMX𝑝𝑚
18 17 2 2thd φFMX𝑝𝑚FX𝑝𝑚
19 eqid M=M
20 19 uztrn2 jMkjkM
21 dmres domFM=MdomF
22 21 elin2 kdomFMkMkdomF
23 22 baib kMkdomFMkdomF
24 fvres kMFMk=Fk
25 24 eleq1d kMFMkuFku
26 23 25 anbi12d kMkdomFMFMkukdomFFku
27 20 26 syl jMkjkdomFMFMkukdomFFku
28 27 ralbidva jMkjkdomFMFMkukjkdomFFku
29 28 rexbiia jMkjkdomFMFMkujMkjkdomFFku
30 29 imbi2i PujMkjkdomFMFMkuPujMkjkdomFFku
31 30 ralbii uJPujMkjkdomFMFMkuuJPujMkjkdomFFku
32 31 a1i φuJPujMkjkdomFMFMkuuJPujMkjkdomFFku
33 18 32 3anbi13d φFMX𝑝𝑚PXuJPujMkjkdomFMFMkuFX𝑝𝑚PXuJPujMkjkdomFFku
34 1 19 3 lmbr2 φFMtJPFMX𝑝𝑚PXuJPujMkjkdomFMFMku
35 1 19 3 lmbr2 φFtJPFX𝑝𝑚PXuJPujMkjkdomFFku
36 33 34 35 3bitr4rd φFtJPFMtJP