Metamath Proof Explorer


Theorem lmres

Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Hypotheses lmres.2 φ J TopOn X
lmres.4 φ F X 𝑝𝑚
lmres.5 φ M
Assertion lmres φ F t J P F M t J P

Proof

Step Hyp Ref Expression
1 lmres.2 φ J TopOn X
2 lmres.4 φ F X 𝑝𝑚
3 lmres.5 φ M
4 toponmax J TopOn X X J
5 1 4 syl φ X J
6 cnex V
7 ssid X X
8 uzssz M
9 zsscn
10 8 9 sstri M
11 pmss12g X X M X J V X 𝑝𝑚 M X 𝑝𝑚
12 7 10 11 mpanl12 X J V X 𝑝𝑚 M X 𝑝𝑚
13 5 6 12 sylancl φ X 𝑝𝑚 M X 𝑝𝑚
14 fvex M V
15 pmresg M V F X 𝑝𝑚 F M X 𝑝𝑚 M
16 14 2 15 sylancr φ F M X 𝑝𝑚 M
17 13 16 sseldd φ F M X 𝑝𝑚
18 17 2 2thd φ F M X 𝑝𝑚 F X 𝑝𝑚
19 eqid M = M
20 19 uztrn2 j M k j k M
21 dmres dom F M = M dom F
22 21 elin2 k dom F M k M k dom F
23 22 baib k M k dom F M k dom F
24 fvres k M F M k = F k
25 24 eleq1d k M F M k u F k u
26 23 25 anbi12d k M k dom F M F M k u k dom F F k u
27 20 26 syl j M k j k dom F M F M k u k dom F F k u
28 27 ralbidva j M k j k dom F M F M k u k j k dom F F k u
29 28 rexbiia j M k j k dom F M F M k u j M k j k dom F F k u
30 29 imbi2i P u j M k j k dom F M F M k u P u j M k j k dom F F k u
31 30 ralbii u J P u j M k j k dom F M F M k u u J P u j M k j k dom F F k u
32 31 a1i φ u J P u j M k j k dom F M F M k u u J P u j M k j k dom F F k u
33 18 32 3anbi13d φ F M X 𝑝𝑚 P X u J P u j M k j k dom F M F M k u F X 𝑝𝑚 P X u J P u j M k j k dom F F k u
34 1 19 3 lmbr2 φ F M t J P F M X 𝑝𝑚 P X u J P u j M k j k dom F M F M k u
35 1 19 3 lmbr2 φ F t J P F X 𝑝𝑚 P X u J P u j M k j k dom F F k u
36 33 34 35 3bitr4rd φ F t J P F M t J P