Metamath Proof Explorer


Theorem lnoadd

Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnoadd.1 X=BaseSetU
lnoadd.5 G=+vU
lnoadd.6 H=+vW
lnoadd.7 L=ULnOpW
Assertion lnoadd UNrmCVecWNrmCVecTLAXBXTAGB=TAHTB

Proof

Step Hyp Ref Expression
1 lnoadd.1 X=BaseSetU
2 lnoadd.5 G=+vU
3 lnoadd.6 H=+vW
4 lnoadd.7 L=ULnOpW
5 ax-1cn 1
6 eqid BaseSetW=BaseSetW
7 eqid 𝑠OLDU=𝑠OLDU
8 eqid 𝑠OLDW=𝑠OLDW
9 1 6 2 3 7 8 4 lnolin UNrmCVecWNrmCVecTL1AXBXT1𝑠OLDUAGB=1𝑠OLDWTAHTB
10 5 9 mp3anr1 UNrmCVecWNrmCVecTLAXBXT1𝑠OLDUAGB=1𝑠OLDWTAHTB
11 simp1 UNrmCVecWNrmCVecTLUNrmCVec
12 simpl AXBXAX
13 1 7 nvsid UNrmCVecAX1𝑠OLDUA=A
14 11 12 13 syl2an UNrmCVecWNrmCVecTLAXBX1𝑠OLDUA=A
15 14 fvoveq1d UNrmCVecWNrmCVecTLAXBXT1𝑠OLDUAGB=TAGB
16 simpl2 UNrmCVecWNrmCVecTLAXBXWNrmCVec
17 1 6 4 lnof UNrmCVecWNrmCVecTLT:XBaseSetW
18 ffvelcdm T:XBaseSetWAXTABaseSetW
19 17 12 18 syl2an UNrmCVecWNrmCVecTLAXBXTABaseSetW
20 6 8 nvsid WNrmCVecTABaseSetW1𝑠OLDWTA=TA
21 16 19 20 syl2anc UNrmCVecWNrmCVecTLAXBX1𝑠OLDWTA=TA
22 21 oveq1d UNrmCVecWNrmCVecTLAXBX1𝑠OLDWTAHTB=TAHTB
23 10 15 22 3eqtr3d UNrmCVecWNrmCVecTLAXBXTAGB=TAHTB