Metamath Proof Explorer


Theorem lnolin

Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnoval.1 X=BaseSetU
lnoval.2 Y=BaseSetW
lnoval.3 G=+vU
lnoval.4 H=+vW
lnoval.5 R=𝑠OLDU
lnoval.6 S=𝑠OLDW
lnoval.7 L=ULnOpW
Assertion lnolin UNrmCVecWNrmCVecTLABXCXTARBGC=ASTBHTC

Proof

Step Hyp Ref Expression
1 lnoval.1 X=BaseSetU
2 lnoval.2 Y=BaseSetW
3 lnoval.3 G=+vU
4 lnoval.4 H=+vW
5 lnoval.5 R=𝑠OLDU
6 lnoval.6 S=𝑠OLDW
7 lnoval.7 L=ULnOpW
8 1 2 3 4 5 6 7 islno UNrmCVecWNrmCVecTLT:XYuwXtXTuRwGt=uSTwHTt
9 8 biimp3a UNrmCVecWNrmCVecTLT:XYuwXtXTuRwGt=uSTwHTt
10 9 simprd UNrmCVecWNrmCVecTLuwXtXTuRwGt=uSTwHTt
11 oveq1 u=AuRw=ARw
12 11 fvoveq1d u=ATuRwGt=TARwGt
13 oveq1 u=AuSTw=ASTw
14 13 oveq1d u=AuSTwHTt=ASTwHTt
15 12 14 eqeq12d u=ATuRwGt=uSTwHTtTARwGt=ASTwHTt
16 oveq2 w=BARw=ARB
17 16 fvoveq1d w=BTARwGt=TARBGt
18 fveq2 w=BTw=TB
19 18 oveq2d w=BASTw=ASTB
20 19 oveq1d w=BASTwHTt=ASTBHTt
21 17 20 eqeq12d w=BTARwGt=ASTwHTtTARBGt=ASTBHTt
22 oveq2 t=CARBGt=ARBGC
23 22 fveq2d t=CTARBGt=TARBGC
24 fveq2 t=CTt=TC
25 24 oveq2d t=CASTBHTt=ASTBHTC
26 23 25 eqeq12d t=CTARBGt=ASTBHTtTARBGC=ASTBHTC
27 15 21 26 rspc3v ABXCXuwXtXTuRwGt=uSTwHTtTARBGC=ASTBHTC
28 10 27 mpan9 UNrmCVecWNrmCVecTLABXCXTARBGC=ASTBHTC