Metamath Proof Explorer


Theorem lnopcoi

Description: The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1 SLinOp
lnopco.2 TLinOp
Assertion lnopcoi STLinOp

Proof

Step Hyp Ref Expression
1 lnopco.1 SLinOp
2 lnopco.2 TLinOp
3 1 lnopfi S:
4 2 lnopfi T:
5 3 4 hocofi ST:
6 2 lnopli xyzTxy+z=xTy+Tz
7 6 fveq2d xyzSTxy+z=SxTy+Tz
8 id xx
9 4 ffvelcdmi yTy
10 4 ffvelcdmi zTz
11 1 lnopli xTyTzSxTy+Tz=xSTy+STz
12 8 9 10 11 syl3an xyzSxTy+Tz=xSTy+STz
13 7 12 eqtrd xyzSTxy+z=xSTy+STz
14 13 3expa xyzSTxy+z=xSTy+STz
15 hvmulcl xyxy
16 hvaddcl xyzxy+z
17 15 16 sylan xyzxy+z
18 3 4 hocoi xy+zSTxy+z=STxy+z
19 17 18 syl xyzSTxy+z=STxy+z
20 3 4 hocoi ySTy=STy
21 20 oveq2d yxSTy=xSTy
22 21 adantl xyxSTy=xSTy
23 3 4 hocoi zSTz=STz
24 22 23 oveqan12d xyzxSTy+STz=xSTy+STz
25 14 19 24 3eqtr4d xyzSTxy+z=xSTy+STz
26 25 3impa xyzSTxy+z=xSTy+STz
27 26 rgen3 xyzSTxy+z=xSTy+STz
28 ellnop STLinOpST:xyzSTxy+z=xSTy+STz
29 5 27 28 mpbir2an STLinOp