Metamath Proof Explorer


Theorem lnopeqi

Description: Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopeq.1 TLinOp
lnopeq.2 ULinOp
Assertion lnopeqi xTxihx=UxihxT=U

Proof

Step Hyp Ref Expression
1 lnopeq.1 TLinOp
2 lnopeq.2 ULinOp
3 1 lnopfi T:
4 3 ffvelcdmi xTx
5 hicl TxxTxihx
6 4 5 mpancom xTxihx
7 2 lnopfi U:
8 7 ffvelcdmi xUx
9 hicl UxxUxihx
10 8 9 mpancom xUxihx
11 6 10 subeq0ad xTxihxUxihx=0Txihx=Uxihx
12 hodval T:U:xT-opUx=Tx-Ux
13 3 7 12 mp3an12 xT-opUx=Tx-Ux
14 13 oveq1d xT-opUxihx=Tx-Uxihx
15 id xx
16 his2sub TxUxxTx-Uxihx=TxihxUxihx
17 4 8 15 16 syl3anc xTx-Uxihx=TxihxUxihx
18 14 17 eqtr2d xTxihxUxihx=T-opUxihx
19 18 eqeq1d xTxihxUxihx=0T-opUxihx=0
20 11 19 bitr3d xTxihx=UxihxT-opUxihx=0
21 20 ralbiia xTxihx=UxihxxT-opUxihx=0
22 1 2 lnophdi T-opULinOp
23 22 lnopeq0i xT-opUxihx=0T-opU=0hop
24 3 7 hosubeq0i T-opU=0hopT=U
25 21 23 24 3bitri xTxihx=UxihxT=U