Metamath Proof Explorer


Theorem locfincf

Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis locfincf.1 X = J
Assertion locfincf K TopOn X J K LocFin J LocFin K

Proof

Step Hyp Ref Expression
1 locfincf.1 X = J
2 topontop K TopOn X K Top
3 2 ad2antrr K TopOn X J K x LocFin J K Top
4 toponuni K TopOn X X = K
5 4 ad2antrr K TopOn X J K x LocFin J X = K
6 eqid x = x
7 1 6 locfinbas x LocFin J X = x
8 7 adantl K TopOn X J K x LocFin J X = x
9 5 8 eqtr3d K TopOn X J K x LocFin J K = x
10 5 eleq2d K TopOn X J K x LocFin J y X y K
11 1 locfinnei x LocFin J y X n J y n s x | s n Fin
12 11 ex x LocFin J y X n J y n s x | s n Fin
13 ssrexv J K n J y n s x | s n Fin n K y n s x | s n Fin
14 13 adantl K TopOn X J K n J y n s x | s n Fin n K y n s x | s n Fin
15 12 14 sylan9r K TopOn X J K x LocFin J y X n K y n s x | s n Fin
16 10 15 sylbird K TopOn X J K x LocFin J y K n K y n s x | s n Fin
17 16 ralrimiv K TopOn X J K x LocFin J y K n K y n s x | s n Fin
18 eqid K = K
19 18 6 islocfin x LocFin K K Top K = x y K n K y n s x | s n Fin
20 3 9 17 19 syl3anbrc K TopOn X J K x LocFin J x LocFin K
21 20 ex K TopOn X J K x LocFin J x LocFin K
22 21 ssrdv K TopOn X J K LocFin J LocFin K