Metamath Proof Explorer


Theorem logbid1

Description: General logarithm is 1 when base and arg match. Property 1(a) of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by David A. Wheeler, 22-Jul-2017)

Ref Expression
Assertion logbid1 AA0A1logAA=1

Proof

Step Hyp Ref Expression
1 eldifpr A01AA0A1
2 1 biimpri AA0A1A01
3 eldifsn A0AA0
4 3 biimpri AA0A0
5 4 3adant3 AA0A1A0
6 logbval A01A0logAA=logAlogA
7 2 5 6 syl2anc AA0A1logAA=logAlogA
8 logcl AA0logA
9 8 3adant3 AA0A1logA
10 logccne0 AA0A1logA0
11 9 10 dividd AA0A1logAlogA=1
12 7 11 eqtrd AA0A1logAA=1