Metamath Proof Explorer


Theorem logdivle

Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Assertion logdivle AeABeBABlogBBlogAA

Proof

Step Hyp Ref Expression
1 logdivlt BeBAeAB<AlogAA<logBB
2 1 ancoms AeABeBB<AlogAA<logBB
3 2 notbid AeABeB¬B<A¬logAA<logBB
4 simpll AeABeBA
5 simprl AeABeBB
6 4 5 lenltd AeABeBAB¬B<A
7 0red AeABeB0
8 ere e
9 8 a1i AeABeBe
10 epos 0<e
11 10 a1i AeABeB0<e
12 simprr AeABeBeB
13 7 9 5 11 12 ltletrd AeABeB0<B
14 5 13 elrpd AeABeBB+
15 relogcl B+logB
16 14 15 syl AeABeBlogB
17 16 14 rerpdivcld AeABeBlogBB
18 simplr AeABeBeA
19 7 9 4 11 18 ltletrd AeABeB0<A
20 4 19 elrpd AeABeBA+
21 relogcl A+logA
22 20 21 syl AeABeBlogA
23 22 20 rerpdivcld AeABeBlogAA
24 17 23 lenltd AeABeBlogBBlogAA¬logAA<logBB
25 3 6 24 3bitr4d AeABeBABlogBBlogAA