Metamath Proof Explorer


Theorem logeq0im1

Description: If the logarithm of a number is 0, the number must be 1. (Contributed by David A. Wheeler, 22-Jul-2017)

Ref Expression
Assertion logeq0im1 AA0logA=0A=1

Proof

Step Hyp Ref Expression
1 eflog AA0elogA=A
2 1 3adant3 AA0logA=0elogA=A
3 fveq2 logA=0elogA=e0
4 ef0 e0=1
5 3 4 eqtrdi logA=0elogA=1
6 5 3ad2ant3 AA0logA=0elogA=1
7 2 6 eqtr3d AA0logA=0A=1