Metamath Proof Explorer


Theorem lpigen

Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses lpigen.u U=LIdealR
lpigen.p P=LPIdealR
lpigen.d ˙=rR
Assertion lpigen RRingIUIPxIyIx˙y

Proof

Step Hyp Ref Expression
1 lpigen.u U=LIdealR
2 lpigen.p P=LPIdealR
3 lpigen.d ˙=rR
4 eqid RSpanR=RSpanR
5 eqid BaseR=BaseR
6 2 4 5 islpidl RRingIPxBaseRI=RSpanRx
7 6 adantr RRingIUIPxBaseRI=RSpanRx
8 5 1 4 3 lidldvgen RRingIUxBaseRI=RSpanRxxIyIx˙y
9 8 3expa RRingIUxBaseRI=RSpanRxxIyIx˙y
10 9 rexbidva RRingIUxBaseRI=RSpanRxxBaseRxIyIx˙y
11 simpr xBaseRxIyIx˙yxIyIx˙y
12 5 1 lidlss IUIBaseR
13 12 adantl RRingIUIBaseR
14 13 sseld RRingIUxIxBaseR
15 14 adantrd RRingIUxIyIx˙yxBaseR
16 15 ancrd RRingIUxIyIx˙yxBaseRxIyIx˙y
17 11 16 impbid2 RRingIUxBaseRxIyIx˙yxIyIx˙y
18 17 rexbidv2 RRingIUxBaseRxIyIx˙yxIyIx˙y
19 7 10 18 3bitrd RRingIUIPxIyIx˙y