Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lpigen.u | |
|
lpigen.p | |
||
lpigen.d | |
||
Assertion | lpigen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpigen.u | |
|
2 | lpigen.p | |
|
3 | lpigen.d | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 2 4 5 | islpidl | |
7 | 6 | adantr | |
8 | 5 1 4 3 | lidldvgen | |
9 | 8 | 3expa | |
10 | 9 | rexbidva | |
11 | simpr | |
|
12 | 5 1 | lidlss | |
13 | 12 | adantl | |
14 | 13 | sseld | |
15 | 14 | adantrd | |
16 | 15 | ancrd | |
17 | 11 16 | impbid2 | |
18 | 17 | rexbidv2 | |
19 | 7 10 18 | 3bitrd | |