Metamath Proof Explorer


Theorem lpigen

Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses lpigen.u 𝑈 = ( LIdeal ‘ 𝑅 )
lpigen.p 𝑃 = ( LPIdeal ‘ 𝑅 )
lpigen.d = ( ∥r𝑅 )
Assertion lpigen ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐼𝑃 ↔ ∃ 𝑥𝐼𝑦𝐼 𝑥 𝑦 ) )

Proof

Step Hyp Ref Expression
1 lpigen.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 lpigen.p 𝑃 = ( LPIdeal ‘ 𝑅 )
3 lpigen.d = ( ∥r𝑅 )
4 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 2 4 5 islpidl ( 𝑅 ∈ Ring → ( 𝐼𝑃 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) )
7 6 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐼𝑃 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) )
8 5 1 4 3 lidldvgen ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) )
9 8 3expa ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) )
10 9 rexbidva ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) )
11 simpr ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) → ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) )
12 5 1 lidlss ( 𝐼𝑈𝐼 ⊆ ( Base ‘ 𝑅 ) )
13 12 adantl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) )
14 13 sseld ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝑥𝐼𝑥 ∈ ( Base ‘ 𝑅 ) ) )
15 14 adantrd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) )
16 15 ancrd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) ) )
17 11 16 impbid2 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) ↔ ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ) )
18 17 rexbidv2 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥𝐼 ∧ ∀ 𝑦𝐼 𝑥 𝑦 ) ↔ ∃ 𝑥𝐼𝑦𝐼 𝑥 𝑦 ) )
19 7 10 18 3bitrd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐼𝑃 ↔ ∃ 𝑥𝐼𝑦𝐼 𝑥 𝑦 ) )