Metamath Proof Explorer


Theorem lpolpolsatN

Description: Property of a polarity. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolpolsat.a A=LSAtomsW
lpolpolsat.p P=LPolW
lpolpolsat.w φWX
lpolpolsat.o φ˙P
lpolpolsat.q φQA
Assertion lpolpolsatN φ˙˙Q=Q

Proof

Step Hyp Ref Expression
1 lpolpolsat.a A=LSAtomsW
2 lpolpolsat.p P=LPolW
3 lpolpolsat.w φWX
4 lpolpolsat.o φ˙P
5 lpolpolsat.q φQA
6 eqid BaseW=BaseW
7 eqid LSubSpW=LSubSpW
8 eqid 0W=0W
9 eqid LSHypW=LSHypW
10 6 7 8 1 9 2 islpolN WX˙P˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xLSHypW˙˙x=x
11 3 10 syl φ˙P˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xLSHypW˙˙x=x
12 4 11 mpbid φ˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xLSHypW˙˙x=x
13 simpr3 ˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xLSHypW˙˙x=xxA˙xLSHypW˙˙x=x
14 fveq2 x=Q˙x=˙Q
15 14 eleq1d x=Q˙xLSHypW˙QLSHypW
16 2fveq3 x=Q˙˙x=˙˙Q
17 id x=Qx=Q
18 16 17 eqeq12d x=Q˙˙x=x˙˙Q=Q
19 15 18 anbi12d x=Q˙xLSHypW˙˙x=x˙QLSHypW˙˙Q=Q
20 19 rspcv QAxA˙xLSHypW˙˙x=x˙QLSHypW˙˙Q=Q
21 5 20 syl φxA˙xLSHypW˙˙x=x˙QLSHypW˙˙Q=Q
22 simpr ˙QLSHypW˙˙Q=Q˙˙Q=Q
23 13 21 22 syl56 φ˙:𝒫BaseWLSubSpW˙BaseW=0WxyxBaseWyBaseWxy˙y˙xxA˙xLSHypW˙˙x=x˙˙Q=Q
24 12 23 mpd φ˙˙Q=Q