Metamath Proof Explorer


Theorem lrrecpred

Description: Finally, we calculate the value of the predecessor class over R . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
Assertion lrrecpred Could not format assertion : No typesetting found for |- ( A e. No -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lrrec.1 Could not format R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
2 dfpred3g ANoPredRNoA=bNo|bRA
3 1 lrrecval Could not format ( ( b e. No /\ A e. No ) -> ( b R A <-> b e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) ) : No typesetting found for |- ( ( b e. No /\ A e. No ) -> ( b R A <-> b e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) ) with typecode |-
4 3 ancoms Could not format ( ( A e. No /\ b e. No ) -> ( b R A <-> b e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) ) : No typesetting found for |- ( ( A e. No /\ b e. No ) -> ( b R A <-> b e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) ) with typecode |-
5 4 rabbidva Could not format ( A e. No -> { b e. No | b R A } = { b e. No | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } ) : No typesetting found for |- ( A e. No -> { b e. No | b R A } = { b e. No | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } ) with typecode |-
6 dfrab2 Could not format { b e. No | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } = ( { b | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } i^i No ) : No typesetting found for |- { b e. No | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } = ( { b | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } i^i No ) with typecode |-
7 abid2 Could not format { b | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } = ( ( _Left ` A ) u. ( _Right ` A ) ) : No typesetting found for |- { b | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } = ( ( _Left ` A ) u. ( _Right ` A ) ) with typecode |-
8 7 ineq1i Could not format ( { b | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } i^i No ) = ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) : No typesetting found for |- ( { b | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } i^i No ) = ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) with typecode |-
9 6 8 eqtri Could not format { b e. No | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } = ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) : No typesetting found for |- { b e. No | b e. ( ( _Left ` A ) u. ( _Right ` A ) ) } = ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) with typecode |-
10 5 9 eqtrdi Could not format ( A e. No -> { b e. No | b R A } = ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) ) : No typesetting found for |- ( A e. No -> { b e. No | b R A } = ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) ) with typecode |-
11 leftssno Could not format ( _Left ` A ) C_ No : No typesetting found for |- ( _Left ` A ) C_ No with typecode |-
12 11 a1i Could not format ( A e. No -> ( _Left ` A ) C_ No ) : No typesetting found for |- ( A e. No -> ( _Left ` A ) C_ No ) with typecode |-
13 rightssno Could not format ( _Right ` A ) C_ No : No typesetting found for |- ( _Right ` A ) C_ No with typecode |-
14 13 a1i Could not format ( A e. No -> ( _Right ` A ) C_ No ) : No typesetting found for |- ( A e. No -> ( _Right ` A ) C_ No ) with typecode |-
15 12 14 unssd Could not format ( A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No ) : No typesetting found for |- ( A e. No -> ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No ) with typecode |-
16 df-ss Could not format ( ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No <-> ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No <-> ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
17 15 16 sylib Could not format ( A e. No -> ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( A e. No -> ( ( ( _Left ` A ) u. ( _Right ` A ) ) i^i No ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
18 2 10 17 3eqtrd Could not format ( A e. No -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( A e. No -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-