Metamath Proof Explorer


Theorem lsatexch1

Description: The atom exch1ange property. ( hlatexch1 analog.) (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses lsatexch1.p ˙=LSSumW
lsatexch1.a A=LSAtomsW
lsatexch1.w φWLVec
lsatexch1.u φQA
lsatexch1.q φRA
lsatexch1.r φSA
lsatexch1.l φQS˙R
lsatexch1.z φQS
Assertion lsatexch1 φRS˙Q

Proof

Step Hyp Ref Expression
1 lsatexch1.p ˙=LSSumW
2 lsatexch1.a A=LSAtomsW
3 lsatexch1.w φWLVec
4 lsatexch1.u φQA
5 lsatexch1.q φRA
6 lsatexch1.r φSA
7 lsatexch1.l φQS˙R
8 lsatexch1.z φQS
9 eqid LSubSpW=LSubSpW
10 eqid 0W=0W
11 lveclmod WLVecWLMod
12 3 11 syl φWLMod
13 9 2 12 6 lsatlssel φSLSubSpW
14 8 necomd φSQ
15 10 2 3 6 4 lsatnem0 φSQSQ=0W
16 14 15 mpbid φSQ=0W
17 9 1 10 2 3 13 4 5 7 16 lsatexch φRS˙Q