Metamath Proof Explorer


Theorem lsatexch1

Description: The atom exch1ange property. ( hlatexch1 analog.) (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses lsatexch1.p ˙ = LSSum W
lsatexch1.a A = LSAtoms W
lsatexch1.w φ W LVec
lsatexch1.u φ Q A
lsatexch1.q φ R A
lsatexch1.r φ S A
lsatexch1.l φ Q S ˙ R
lsatexch1.z φ Q S
Assertion lsatexch1 φ R S ˙ Q

Proof

Step Hyp Ref Expression
1 lsatexch1.p ˙ = LSSum W
2 lsatexch1.a A = LSAtoms W
3 lsatexch1.w φ W LVec
4 lsatexch1.u φ Q A
5 lsatexch1.q φ R A
6 lsatexch1.r φ S A
7 lsatexch1.l φ Q S ˙ R
8 lsatexch1.z φ Q S
9 eqid LSubSp W = LSubSp W
10 eqid 0 W = 0 W
11 lveclmod W LVec W LMod
12 3 11 syl φ W LMod
13 9 2 12 6 lsatlssel φ S LSubSp W
14 8 necomd φ S Q
15 10 2 3 6 4 lsatnem0 φ S Q S Q = 0 W
16 14 15 mpbid φ S Q = 0 W
17 9 1 10 2 3 13 4 5 7 16 lsatexch φ R S ˙ Q