Metamath Proof Explorer


Theorem lshpinN

Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lshpin.h H = LSHyp W
lshpin.w φ W LVec
lshpin.t φ T H
lshpin.u φ U H
Assertion lshpinN φ T U H T = U

Proof

Step Hyp Ref Expression
1 lshpin.h H = LSHyp W
2 lshpin.w φ W LVec
3 lshpin.t φ T H
4 lshpin.u φ U H
5 inss1 T U T
6 2 adantr φ T U H W LVec
7 simpr φ T U H T U H
8 3 adantr φ T U H T H
9 1 6 7 8 lshpcmp φ T U H T U T T U = T
10 5 9 mpbii φ T U H T U = T
11 inss2 T U U
12 4 adantr φ T U H U H
13 1 6 7 12 lshpcmp φ T U H T U U T U = U
14 11 13 mpbii φ T U H T U = U
15 10 14 eqtr3d φ T U H T = U
16 15 ex φ T U H T = U
17 inidm T T = T
18 17 3 eqeltrid φ T T H
19 ineq2 T = U T T = T U
20 19 eleq1d T = U T T H T U H
21 18 20 syl5ibcom φ T = U T U H
22 16 21 impbid φ T U H T = U