Metamath Proof Explorer


Theorem lshpset

Description: The set of all hyperplanes of a left module or left vector space. The vector v is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014)

Ref Expression
Hypotheses lshpset.v V=BaseW
lshpset.n N=LSpanW
lshpset.s S=LSubSpW
lshpset.h H=LSHypW
Assertion lshpset WXH=sS|sVvVNsv=V

Proof

Step Hyp Ref Expression
1 lshpset.v V=BaseW
2 lshpset.n N=LSpanW
3 lshpset.s S=LSubSpW
4 lshpset.h H=LSHypW
5 elex WXWV
6 fveq2 w=WLSubSpw=LSubSpW
7 6 3 eqtr4di w=WLSubSpw=S
8 fveq2 w=WBasew=BaseW
9 8 1 eqtr4di w=WBasew=V
10 9 neeq2d w=WsBasewsV
11 fveq2 w=WLSpanw=LSpanW
12 11 2 eqtr4di w=WLSpanw=N
13 12 fveq1d w=WLSpanwsv=Nsv
14 13 9 eqeq12d w=WLSpanwsv=BasewNsv=V
15 9 14 rexeqbidv w=WvBasewLSpanwsv=BasewvVNsv=V
16 10 15 anbi12d w=WsBasewvBasewLSpanwsv=BasewsVvVNsv=V
17 7 16 rabeqbidv w=WsLSubSpw|sBasewvBasewLSpanwsv=Basew=sS|sVvVNsv=V
18 df-lshyp LSHyp=wVsLSubSpw|sBasewvBasewLSpanwsv=Basew
19 3 fvexi SV
20 19 rabex sS|sVvVNsv=VV
21 17 18 20 fvmpt WVLSHypW=sS|sVvVNsv=V
22 5 21 syl WXLSHypW=sS|sVvVNsv=V
23 4 22 eqtrid WXH=sS|sVvVNsv=V