Metamath Proof Explorer


Theorem lsmcntzr

Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmcntz.z Z = Cntz G
Assertion lsmcntzr φ S Z T ˙ U S Z T S Z U

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmcntz.z Z = Cntz G
6 1 3 4 2 5 lsmcntz φ T ˙ U Z S T Z S U Z S
7 subgrcl S SubGrp G G Grp
8 grpmnd G Grp G Mnd
9 2 7 8 3syl φ G Mnd
10 eqid Base G = Base G
11 10 subgss T SubGrp G T Base G
12 3 11 syl φ T Base G
13 10 subgss U SubGrp G U Base G
14 4 13 syl φ U Base G
15 10 1 lsmssv G Mnd T Base G U Base G T ˙ U Base G
16 9 12 14 15 syl3anc φ T ˙ U Base G
17 10 subgss S SubGrp G S Base G
18 2 17 syl φ S Base G
19 10 5 cntzrec T ˙ U Base G S Base G T ˙ U Z S S Z T ˙ U
20 16 18 19 syl2anc φ T ˙ U Z S S Z T ˙ U
21 10 5 cntzrec T Base G S Base G T Z S S Z T
22 12 18 21 syl2anc φ T Z S S Z T
23 10 5 cntzrec U Base G S Base G U Z S S Z U
24 14 18 23 syl2anc φ U Z S S Z U
25 22 24 anbi12d φ T Z S U Z S S Z T S Z U
26 6 20 25 3bitr3d φ S Z T ˙ U S Z T S Z U