Metamath Proof Explorer


Theorem lsmidllsp

Description: The sum of two ideals is the ideal generated by their union. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmidl.1 B=BaseR
lsmidl.3 ˙=LSSumR
lsmidl.4 K=RSpanR
lsmidl.5 φRRing
lsmidl.6 φILIdealR
lsmidl.7 φJLIdealR
Assertion lsmidllsp φI˙J=KIJ

Proof

Step Hyp Ref Expression
1 lsmidl.1 B=BaseR
2 lsmidl.3 ˙=LSSumR
3 lsmidl.4 K=RSpanR
4 lsmidl.5 φRRing
5 lsmidl.6 φILIdealR
6 lsmidl.7 φJLIdealR
7 rlmlsm RRingLSSumR=LSSumringLModR
8 4 7 syl φLSSumR=LSSumringLModR
9 2 8 eqtrid φ˙=LSSumringLModR
10 9 oveqd φI˙J=ILSSumringLModRJ
11 rlmlmod RRingringLModRLMod
12 4 11 syl φringLModRLMod
13 lidlval LIdealR=LSubSpringLModR
14 rspval RSpanR=LSpanringLModR
15 3 14 eqtri K=LSpanringLModR
16 eqid LSSumringLModR=LSSumringLModR
17 13 15 16 lsmsp ringLModRLModILIdealRJLIdealRILSSumringLModRJ=KIJ
18 12 5 6 17 syl3anc φILSSumringLModRJ=KIJ
19 10 18 eqtrd φI˙J=KIJ