Metamath Proof Explorer


Theorem lsmsatcv

Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of Kalmbach p. 153. ( spansncvi analog.) Explicit atom version of lsmcv . (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses lsmsatcv.s S = LSubSp W
lsmsatcv.p ˙ = LSSum W
lsmsatcv.a A = LSAtoms W
lsmsatcv.w φ W LVec
lsmsatcv.t φ T S
lsmsatcv.u φ U S
lsmsatcv.x φ Q A
Assertion lsmsatcv φ T U U T ˙ Q U = T ˙ Q

Proof

Step Hyp Ref Expression
1 lsmsatcv.s S = LSubSp W
2 lsmsatcv.p ˙ = LSSum W
3 lsmsatcv.a A = LSAtoms W
4 lsmsatcv.w φ W LVec
5 lsmsatcv.t φ T S
6 lsmsatcv.u φ U S
7 lsmsatcv.x φ Q A
8 eqid Base W = Base W
9 eqid LSpan W = LSpan W
10 8 9 3 islsati W LVec Q A v Base W Q = LSpan W v
11 4 7 10 syl2anc φ v Base W Q = LSpan W v
12 4 adantr φ v Base W W LVec
13 5 adantr φ v Base W T S
14 6 adantr φ v Base W U S
15 simpr φ v Base W v Base W
16 8 1 9 2 12 13 14 15 lsmcv φ v Base W T U U T ˙ LSpan W v U = T ˙ LSpan W v
17 16 3expib φ v Base W T U U T ˙ LSpan W v U = T ˙ LSpan W v
18 17 3adant3 φ v Base W Q = LSpan W v T U U T ˙ LSpan W v U = T ˙ LSpan W v
19 oveq2 Q = LSpan W v T ˙ Q = T ˙ LSpan W v
20 19 sseq2d Q = LSpan W v U T ˙ Q U T ˙ LSpan W v
21 20 anbi2d Q = LSpan W v T U U T ˙ Q T U U T ˙ LSpan W v
22 19 eqeq2d Q = LSpan W v U = T ˙ Q U = T ˙ LSpan W v
23 21 22 imbi12d Q = LSpan W v T U U T ˙ Q U = T ˙ Q T U U T ˙ LSpan W v U = T ˙ LSpan W v
24 23 3ad2ant3 φ v Base W Q = LSpan W v T U U T ˙ Q U = T ˙ Q T U U T ˙ LSpan W v U = T ˙ LSpan W v
25 18 24 mpbird φ v Base W Q = LSpan W v T U U T ˙ Q U = T ˙ Q
26 25 rexlimdv3a φ v Base W Q = LSpan W v T U U T ˙ Q U = T ˙ Q
27 11 26 mpd φ T U U T ˙ Q U = T ˙ Q
28 27 3impib φ T U U T ˙ Q U = T ˙ Q