Metamath Proof Explorer


Theorem lsmssspx

Description: Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014)

Ref Expression
Hypotheses lsmsp2.v V=BaseW
lsmsp2.n N=LSpanW
lsmsp2.p ˙=LSSumW
lsmssspx.t φTV
lsmssspx.u φUV
lsmssspx.w φWLMod
Assertion lsmssspx φT˙UNTU

Proof

Step Hyp Ref Expression
1 lsmsp2.v V=BaseW
2 lsmsp2.n N=LSpanW
3 lsmsp2.p ˙=LSSumW
4 lsmssspx.t φTV
5 lsmssspx.u φUV
6 lsmssspx.w φWLMod
7 1 2 lspssv WLModTVNTV
8 6 4 7 syl2anc φNTV
9 1 2 lspssid WLModTVTNT
10 6 4 9 syl2anc φTNT
11 1 3 lsmless1x WLModNTVUVTNTT˙UNT˙U
12 6 8 5 10 11 syl31anc φT˙UNT˙U
13 1 2 lspssv WLModUVNUV
14 6 5 13 syl2anc φNUV
15 1 2 lspssid WLModUVUNU
16 6 5 15 syl2anc φUNU
17 1 3 lsmless2x WLModNTVNUVUNUNT˙UNT˙NU
18 6 8 14 16 17 syl31anc φNT˙UNT˙NU
19 12 18 sstrd φT˙UNT˙NU
20 1 2 3 lsmsp2 WLModTVUVNT˙NU=NTU
21 6 4 5 20 syl3anc φNT˙NU=NTU
22 19 21 sseqtrd φT˙UNTU