Metamath Proof Explorer


Theorem lsscl

Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lsscl.f F=ScalarW
lsscl.b B=BaseF
lsscl.p +˙=+W
lsscl.t ·˙=W
lsscl.s S=LSubSpW
Assertion lsscl USZBXUYUZ·˙X+˙YU

Proof

Step Hyp Ref Expression
1 lsscl.f F=ScalarW
2 lsscl.b B=BaseF
3 lsscl.p +˙=+W
4 lsscl.t ·˙=W
5 lsscl.s S=LSubSpW
6 eqid BaseW=BaseW
7 1 2 6 3 4 5 islss USUBaseWUxBaUbUx·˙a+˙bU
8 7 simp3bi USxBaUbUx·˙a+˙bU
9 oveq1 x=Zx·˙a=Z·˙a
10 9 oveq1d x=Zx·˙a+˙b=Z·˙a+˙b
11 10 eleq1d x=Zx·˙a+˙bUZ·˙a+˙bU
12 oveq2 a=XZ·˙a=Z·˙X
13 12 oveq1d a=XZ·˙a+˙b=Z·˙X+˙b
14 13 eleq1d a=XZ·˙a+˙bUZ·˙X+˙bU
15 oveq2 b=YZ·˙X+˙b=Z·˙X+˙Y
16 15 eleq1d b=YZ·˙X+˙bUZ·˙X+˙YU
17 11 14 16 rspc3v ZBXUYUxBaUbUx·˙a+˙bUZ·˙X+˙YU
18 8 17 mpan9 USZBXUYUZ·˙X+˙YU