Metamath Proof Explorer


Theorem lt2msq1

Description: Lemma for lt2msq . (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lt2msq1 A0ABA<BAA<BB

Proof

Step Hyp Ref Expression
1 simp1l A0ABA<BA
2 1 1 remulcld A0ABA<BAA
3 simp2 A0ABA<BB
4 3 1 remulcld A0ABA<BBA
5 3 3 remulcld A0ABA<BBB
6 simp1 A0ABA<BA0A
7 simp3 A0ABA<BA<B
8 1 3 7 ltled A0ABA<BAB
9 lemul1a ABA0AABAABA
10 1 3 6 8 9 syl31anc A0ABA<BAABA
11 0red A0ABA<B0
12 simp1r A0ABA<B0A
13 11 1 3 12 7 lelttrd A0ABA<B0<B
14 ltmul2 ABB0<BA<BBA<BB
15 1 3 3 13 14 syl112anc A0ABA<BA<BBA<BB
16 7 15 mpbid A0ABA<BBA<BB
17 2 4 5 10 16 lelttrd A0ABA<BAA<BB