Description: Lemma for lt2msq . (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | lt2msq1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l | |
|
2 | 1 1 | remulcld | |
3 | simp2 | |
|
4 | 3 1 | remulcld | |
5 | 3 3 | remulcld | |
6 | simp1 | |
|
7 | simp3 | |
|
8 | 1 3 7 | ltled | |
9 | lemul1a | |
|
10 | 1 3 6 8 9 | syl31anc | |
11 | 0red | |
|
12 | simp1r | |
|
13 | 11 1 3 12 7 | lelttrd | |
14 | ltmul2 | |
|
15 | 1 3 3 13 14 | syl112anc | |
16 | 7 15 | mpbid | |
17 | 2 4 5 10 16 | lelttrd | |