Metamath Proof Explorer


Theorem ltesubnnd

Description: Subtracting an integer number from another number decreases it. See ltsubrpd . (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ltesubnnd.1 φM
ltesubnnd.2 φN
Assertion ltesubnnd φM+1-NM

Proof

Step Hyp Ref Expression
1 ltesubnnd.1 φM
2 ltesubnnd.2 φN
3 1 zcnd φM
4 1cnd φ1
5 2 nncnd φN
6 3 4 5 addsubd φM+1-N=M-N+1
7 1 zred φM
8 2 nnrpd φN+
9 7 8 ltsubrpd φMN<M
10 2 nnzd φN
11 1 10 zsubcld φMN
12 zltp1le MNMMN<MM-N+1M
13 11 1 12 syl2anc φMN<MM-N+1M
14 9 13 mpbid φM-N+1M
15 6 14 eqbrtrd φM+1-NM