| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodeq02.1 |  | 
						
							| 2 |  | fprodeq02.a |  | 
						
							| 3 |  | fprodeq02.b |  | 
						
							| 4 |  | fprodeq02.k |  | 
						
							| 5 |  | fprodeq02.c |  | 
						
							| 6 |  | disjdif |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 | 4 | snssd |  | 
						
							| 9 |  | undif |  | 
						
							| 10 | 8 9 | sylib |  | 
						
							| 11 | 10 | eqcomd |  | 
						
							| 12 | 7 11 2 3 | fprodsplit |  | 
						
							| 13 |  | 0cnd |  | 
						
							| 14 | 5 13 | eqeltrd |  | 
						
							| 15 | 1 | prodsn |  | 
						
							| 16 | 4 14 15 | syl2anc |  | 
						
							| 17 | 16 5 | eqtrd |  | 
						
							| 18 | 17 | oveq1d |  | 
						
							| 19 |  | diffi |  | 
						
							| 20 | 2 19 | syl |  | 
						
							| 21 |  | difssd |  | 
						
							| 22 | 21 | sselda |  | 
						
							| 23 | 22 3 | syldan |  | 
						
							| 24 | 20 23 | fprodcl |  | 
						
							| 25 | 24 | mul02d |  | 
						
							| 26 | 12 18 25 | 3eqtrd |  |