Description: If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodeq02.1 | |
|
fprodeq02.a | |
||
fprodeq02.b | |
||
fprodeq02.k | |
||
fprodeq02.c | |
||
Assertion | fprodeq02 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodeq02.1 | |
|
2 | fprodeq02.a | |
|
3 | fprodeq02.b | |
|
4 | fprodeq02.k | |
|
5 | fprodeq02.c | |
|
6 | disjdif | |
|
7 | 6 | a1i | |
8 | 4 | snssd | |
9 | undif | |
|
10 | 8 9 | sylib | |
11 | 10 | eqcomd | |
12 | 7 11 2 3 | fprodsplit | |
13 | 0cnd | |
|
14 | 5 13 | eqeltrd | |
15 | 1 | prodsn | |
16 | 4 14 15 | syl2anc | |
17 | 16 5 | eqtrd | |
18 | 17 | oveq1d | |
19 | diffi | |
|
20 | 2 19 | syl | |
21 | difssd | |
|
22 | 21 | sselda | |
23 | 22 3 | syldan | |
24 | 20 23 | fprodcl | |
25 | 24 | mul02d | |
26 | 12 18 25 | 3eqtrd | |