Metamath Proof Explorer


Theorem ltexp2r

Description: The integer powers of a fixed positive real smaller than 1 decrease as the exponent increases. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion ltexp2r A+MNA<1M<NAN<AM

Proof

Step Hyp Ref Expression
1 simpl1 A+MNA<1A+
2 1 rpcnd A+MNA<1A
3 1 rpne0d A+MNA<1A0
4 simpl2 A+MNA<1M
5 exprec AA0M1AM=1AM
6 2 3 4 5 syl3anc A+MNA<11AM=1AM
7 simpl3 A+MNA<1N
8 exprec AA0N1AN=1AN
9 2 3 7 8 syl3anc A+MNA<11AN=1AN
10 6 9 breq12d A+MNA<11AM<1AN1AM<1AN
11 1 rprecred A+MNA<11A
12 simpr A+MNA<1A<1
13 1 reclt1d A+MNA<1A<11<1A
14 12 13 mpbid A+MNA<11<1A
15 ltexp2 1AMN1<1AM<N1AM<1AN
16 11 4 7 14 15 syl31anc A+MNA<1M<N1AM<1AN
17 rpexpcl A+NAN+
18 1 7 17 syl2anc A+MNA<1AN+
19 rpexpcl A+MAM+
20 1 4 19 syl2anc A+MNA<1AM+
21 18 20 ltrecd A+MNA<1AN<AM1AM<1AN
22 10 16 21 3bitr4d A+MNA<1M<NAN<AM