Metamath Proof Explorer


Theorem m2cpmghm

Description: The transformation of matrices into constant polynomial matrices is an additive group homomorphism. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S=NConstPolyMatR
m2cpm.t T=NmatToPolyMatR
m2cpm.a A=NMatR
m2cpm.b B=BaseA
m2cpmghm.p P=Poly1R
m2cpmghm.c C=NMatP
m2cpmghm.u U=C𝑠S
Assertion m2cpmghm NFinRRingTAGrpHomU

Proof

Step Hyp Ref Expression
1 m2cpm.s S=NConstPolyMatR
2 m2cpm.t T=NmatToPolyMatR
3 m2cpm.a A=NMatR
4 m2cpm.b B=BaseA
5 m2cpmghm.p P=Poly1R
6 m2cpmghm.c C=NMatP
7 m2cpmghm.u U=C𝑠S
8 eqid BaseC=BaseC
9 2 3 4 5 6 8 mat2pmatghm NFinRRingTAGrpHomC
10 1 5 6 cpmatsubgpmat NFinRRingSSubGrpC
11 1 2 3 4 m2cpmf NFinRRingT:BS
12 11 frnd NFinRRingranTS
13 7 resghm2b SSubGrpCranTSTAGrpHomCTAGrpHomU
14 13 bicomd SSubGrpCranTSTAGrpHomUTAGrpHomC
15 10 12 14 syl2anc NFinRRingTAGrpHomUTAGrpHomC
16 9 15 mpbird NFinRRingTAGrpHomU