Metamath Proof Explorer


Theorem maduval

Description: Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018)

Ref Expression
Hypotheses madufval.a A=NMatR
madufval.d D=NmaDetR
madufval.j J=NmaAdjuR
madufval.b B=BaseA
madufval.o 1˙=1R
madufval.z 0˙=0R
Assertion maduval MBJM=iN,jNDkN,lNifk=jifl=i1˙0˙kMl

Proof

Step Hyp Ref Expression
1 madufval.a A=NMatR
2 madufval.d D=NmaDetR
3 madufval.j J=NmaAdjuR
4 madufval.b B=BaseA
5 madufval.o 1˙=1R
6 madufval.z 0˙=0R
7 1 4 matrcl MBNFinRV
8 7 simpld MBNFin
9 mpoexga NFinNFiniN,jNDkN,lNifk=jifl=i1˙0˙kMlV
10 8 8 9 syl2anc MBiN,jNDkN,lNifk=jifl=i1˙0˙kMlV
11 oveq m=Mkml=kMl
12 11 ifeq2d m=Mifk=jifl=i1˙0˙kml=ifk=jifl=i1˙0˙kMl
13 12 mpoeq3dv m=MkN,lNifk=jifl=i1˙0˙kml=kN,lNifk=jifl=i1˙0˙kMl
14 13 3ad2ant1 m=MiNjNkN,lNifk=jifl=i1˙0˙kml=kN,lNifk=jifl=i1˙0˙kMl
15 14 fveq2d m=MiNjNDkN,lNifk=jifl=i1˙0˙kml=DkN,lNifk=jifl=i1˙0˙kMl
16 15 mpoeq3dva m=MiN,jNDkN,lNifk=jifl=i1˙0˙kml=iN,jNDkN,lNifk=jifl=i1˙0˙kMl
17 1 2 3 4 5 6 madufval J=mBiN,jNDkN,lNifk=jifl=i1˙0˙kml
18 16 17 fvmptg MBiN,jNDkN,lNifk=jifl=i1˙0˙kMlVJM=iN,jNDkN,lNifk=jifl=i1˙0˙kMl
19 10 18 mpdan MBJM=iN,jNDkN,lNifk=jifl=i1˙0˙kMl