Metamath Proof Explorer


Theorem mapdindp1

Description: Vector independence lemma. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses mapdindp1.v V=BaseW
mapdindp1.p +˙=+W
mapdindp1.o 0˙=0W
mapdindp1.n N=LSpanW
mapdindp1.w φWLVec
mapdindp1.x φXV0˙
mapdindp1.y φYV0˙
mapdindp1.z φZV0˙
mapdindp1.W φwV0˙
mapdindp1.e φNY=NZ
mapdindp1.ne φNXNY
mapdindp1.f φ¬wNXY
Assertion mapdindp1 φNXNY+˙Z

Proof

Step Hyp Ref Expression
1 mapdindp1.v V=BaseW
2 mapdindp1.p +˙=+W
3 mapdindp1.o 0˙=0W
4 mapdindp1.n N=LSpanW
5 mapdindp1.w φWLVec
6 mapdindp1.x φXV0˙
7 mapdindp1.y φYV0˙
8 mapdindp1.z φZV0˙
9 mapdindp1.W φwV0˙
10 mapdindp1.e φNY=NZ
11 mapdindp1.ne φNXNY
12 mapdindp1.f φ¬wNXY
13 eldifsni XV0˙X0˙
14 6 13 syl φX0˙
15 lveclmod WLVecWLMod
16 5 15 syl φWLMod
17 3 4 lspsn0 WLModN0˙=0˙
18 16 17 syl φN0˙=0˙
19 18 eqeq2d φNX=N0˙NX=0˙
20 6 eldifad φXV
21 1 3 4 lspsneq0 WLModXVNX=0˙X=0˙
22 16 20 21 syl2anc φNX=0˙X=0˙
23 19 22 bitrd φNX=N0˙X=0˙
24 23 necon3bid φNXN0˙X0˙
25 14 24 mpbird φNXN0˙
26 25 adantr φY+˙Z=0˙NXN0˙
27 sneq Y+˙Z=0˙Y+˙Z=0˙
28 27 fveq2d Y+˙Z=0˙NY+˙Z=N0˙
29 28 adantl φY+˙Z=0˙NY+˙Z=N0˙
30 26 29 neeqtrrd φY+˙Z=0˙NXNY+˙Z
31 11 adantr φY+˙Z0˙NXNY
32 5 adantr φY+˙Z0˙WLVec
33 6 adantr φY+˙Z0˙XV0˙
34 7 adantr φY+˙Z0˙YV0˙
35 8 adantr φY+˙Z0˙ZV0˙
36 9 adantr φY+˙Z0˙wV0˙
37 10 adantr φY+˙Z0˙NY=NZ
38 12 adantr φY+˙Z0˙¬wNXY
39 simpr φY+˙Z0˙Y+˙Z0˙
40 1 2 3 4 32 33 34 35 36 37 31 38 39 mapdindp0 φY+˙Z0˙NY+˙Z=NY
41 31 40 neeqtrrd φY+˙Z0˙NXNY+˙Z
42 30 41 pm2.61dane φNXNY+˙Z