Metamath Proof Explorer


Theorem mapdsn3

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses mapdsn3.h H=LHypK
mapdsn3.o O=ocHKW
mapdsn3.m M=mapdKW
mapdsn3.u U=DVecHKW
mapdsn3.v V=BaseU
mapdsn3.n N=LSpanU
mapdsn3.f F=LFnlU
mapdsn3.l L=LKerU
mapdsn3.d D=LDualU
mapdsn3.p P=LSpanD
mapdsn3.k φKHLWH
mapdsn3.x φXV
mapdsn3.g φGF
mapdsn3.e φLG=OX
Assertion mapdsn3 φMNX=PG

Proof

Step Hyp Ref Expression
1 mapdsn3.h H=LHypK
2 mapdsn3.o O=ocHKW
3 mapdsn3.m M=mapdKW
4 mapdsn3.u U=DVecHKW
5 mapdsn3.v V=BaseU
6 mapdsn3.n N=LSpanU
7 mapdsn3.f F=LFnlU
8 mapdsn3.l L=LKerU
9 mapdsn3.d D=LDualU
10 mapdsn3.p P=LSpanD
11 mapdsn3.k φKHLWH
12 mapdsn3.x φXV
13 mapdsn3.g φGF
14 mapdsn3.e φLG=OX
15 1 2 3 4 5 6 7 8 11 12 14 mapdsn2 φMNX=fF|LGLf
16 1 4 11 dvhlvec φULVec
17 7 8 9 10 16 13 ldual1dim φPG=fF|LGLf
18 15 17 eqtr4d φMNX=PG