Metamath Proof Explorer


Theorem mapdsn3

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses mapdsn3.h H = LHyp K
mapdsn3.o O = ocH K W
mapdsn3.m M = mapd K W
mapdsn3.u U = DVecH K W
mapdsn3.v V = Base U
mapdsn3.n N = LSpan U
mapdsn3.f F = LFnl U
mapdsn3.l L = LKer U
mapdsn3.d D = LDual U
mapdsn3.p P = LSpan D
mapdsn3.k φ K HL W H
mapdsn3.x φ X V
mapdsn3.g φ G F
mapdsn3.e φ L G = O X
Assertion mapdsn3 φ M N X = P G

Proof

Step Hyp Ref Expression
1 mapdsn3.h H = LHyp K
2 mapdsn3.o O = ocH K W
3 mapdsn3.m M = mapd K W
4 mapdsn3.u U = DVecH K W
5 mapdsn3.v V = Base U
6 mapdsn3.n N = LSpan U
7 mapdsn3.f F = LFnl U
8 mapdsn3.l L = LKer U
9 mapdsn3.d D = LDual U
10 mapdsn3.p P = LSpan D
11 mapdsn3.k φ K HL W H
12 mapdsn3.x φ X V
13 mapdsn3.g φ G F
14 mapdsn3.e φ L G = O X
15 1 2 3 4 5 6 7 8 11 12 14 mapdsn2 φ M N X = f F | L G L f
16 1 4 11 dvhlvec φ U LVec
17 7 8 9 10 16 13 ldual1dim φ P G = f F | L G L f
18 15 17 eqtr4d φ M N X = P G