Metamath Proof Explorer


Theorem marrepfval

Description: First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses marrepfval.a A=NMatR
marrepfval.b B=BaseA
marrepfval.q Q=NmatRRepR
marrepfval.z 0˙=0R
Assertion marrepfval Q=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj

Proof

Step Hyp Ref Expression
1 marrepfval.a A=NMatR
2 marrepfval.b B=BaseA
3 marrepfval.q Q=NmatRRepR
4 marrepfval.z 0˙=0R
5 2 fvexi BV
6 fvexd NVRVBaseRV
7 mpoexga BVBaseRVmB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imjV
8 5 6 7 sylancr NVRVmB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imjV
9 oveq12 n=Nr=RnMatr=NMatR
10 9 fveq2d n=Nr=RBasenMatr=BaseNMatR
11 1 fveq2i BaseA=BaseNMatR
12 2 11 eqtri B=BaseNMatR
13 10 12 eqtr4di n=Nr=RBasenMatr=B
14 fveq2 r=RBaser=BaseR
15 14 adantl n=Nr=RBaser=BaseR
16 simpl n=Nr=Rn=N
17 fveq2 r=R0r=0R
18 17 4 eqtr4di r=R0r=0˙
19 18 ifeq2d r=Rifj=ls0r=ifj=ls0˙
20 19 ifeq1d r=Rifi=kifj=ls0rimj=ifi=kifj=ls0˙imj
21 20 adantl n=Nr=Rifi=kifj=ls0rimj=ifi=kifj=ls0˙imj
22 16 16 21 mpoeq123dv n=Nr=Rin,jnifi=kifj=ls0rimj=iN,jNifi=kifj=ls0˙imj
23 16 16 22 mpoeq123dv n=Nr=Rkn,lnin,jnifi=kifj=ls0rimj=kN,lNiN,jNifi=kifj=ls0˙imj
24 13 15 23 mpoeq123dv n=Nr=RmBasenMatr,sBaserkn,lnin,jnifi=kifj=ls0rimj=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj
25 df-marrep matRRep=nV,rVmBasenMatr,sBaserkn,lnin,jnifi=kifj=ls0rimj
26 24 25 ovmpoga NVRVmB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imjVNmatRRepR=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj
27 8 26 mpd3an3 NVRVNmatRRepR=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj
28 25 mpondm0 ¬NVRVNmatRRepR=
29 matbas0pc ¬NVRVBaseNMatR=
30 12 29 eqtrid ¬NVRVB=
31 30 orcd ¬NVRVB=BaseR=
32 0mpo0 B=BaseR=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj=
33 31 32 syl ¬NVRVmB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj=
34 28 33 eqtr4d ¬NVRVNmatRRepR=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj
35 27 34 pm2.61i NmatRRepR=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj
36 3 35 eqtri Q=mB,sBaseRkN,lNiN,jNifi=kifj=ls0˙imj