Metamath Proof Explorer


Theorem mat0dimcrng

Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypothesis mat0dim.a A = Mat R
Assertion mat0dimcrng R Ring A CRing

Proof

Step Hyp Ref Expression
1 mat0dim.a A = Mat R
2 0fin Fin
3 1 matring Fin R Ring A Ring
4 2 3 mpan R Ring A Ring
5 mat0dimbas0 R Ring Base Mat R =
6 1 eqcomi Mat R = A
7 6 fveq2i Base Mat R = Base A
8 7 eqeq1i Base Mat R = Base A =
9 eqidd Base A = R Ring A = A
10 0ex V
11 oveq1 x = x A y = A y
12 oveq2 x = y A x = y A
13 11 12 eqeq12d x = x A y = y A x A y = y A
14 13 ralbidv x = y x A y = y A x y A y = y A
15 10 14 ralsn x y x A y = y A x y A y = y A
16 oveq2 y = A y = A
17 oveq1 y = y A = A
18 16 17 eqeq12d y = A y = y A A = A
19 10 18 ralsn y A y = y A A = A
20 15 19 bitri x y x A y = y A x A = A
21 9 20 sylibr Base A = R Ring x y x A y = y A x
22 raleq Base A = y Base A x A y = y A x y x A y = y A x
23 22 raleqbi1dv Base A = x Base A y Base A x A y = y A x x y x A y = y A x
24 23 adantr Base A = R Ring x Base A y Base A x A y = y A x x y x A y = y A x
25 21 24 mpbird Base A = R Ring x Base A y Base A x A y = y A x
26 25 ex Base A = R Ring x Base A y Base A x A y = y A x
27 8 26 sylbi Base Mat R = R Ring x Base A y Base A x A y = y A x
28 5 27 mpcom R Ring x Base A y Base A x A y = y A x
29 eqid Base A = Base A
30 eqid A = A
31 29 30 iscrng2 A CRing A Ring x Base A y Base A x A y = y A x
32 4 28 31 sylanbrc R Ring A CRing