Metamath Proof Explorer


Theorem mat1dim0

Description: The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A=EMatR
mat1dim.b B=BaseR
mat1dim.o O=EE
Assertion mat1dim0 RRingEV0A=O0R

Proof

Step Hyp Ref Expression
1 mat1dim.a A=EMatR
2 mat1dim.b B=BaseR
3 mat1dim.o O=EE
4 snfi EFin
5 4 a1i EVEFin
6 5 anim2i RRingEVRRingEFin
7 6 ancomd RRingEVEFinRRing
8 eqid 0R=0R
9 1 8 mat0op EFinRRing0A=xE,yE0R
10 7 9 syl RRingEV0A=xE,yE0R
11 simpr RRingEVEV
12 fvexd RRingEV0RV
13 eqid xE,yE0R=xE,yE0R
14 eqidd x=E0R=0R
15 eqidd y=E0R=0R
16 13 14 15 mposn EVEV0RVxE,yE0R=EE0R
17 3 eqcomi EE=O
18 17 opeq1i EE0R=O0R
19 18 sneqi EE0R=O0R
20 16 19 eqtrdi EVEV0RVxE,yE0R=O0R
21 11 11 12 20 syl3anc RRingEVxE,yE0R=O0R
22 10 21 eqtrd RRingEV0A=O0R