Metamath Proof Explorer


Theorem mat1dimid

Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A=EMatR
mat1dim.b B=BaseR
mat1dim.o O=EE
Assertion mat1dimid RRingEV1A=O1R

Proof

Step Hyp Ref Expression
1 mat1dim.a A=EMatR
2 mat1dim.b B=BaseR
3 mat1dim.o O=EE
4 snfi EFin
5 4 a1i EVEFin
6 5 anim2i RRingEVRRingEFin
7 6 ancomd RRingEVEFinRRing
8 eqid 1R=1R
9 eqid 0R=0R
10 1 8 9 mat1 EFinRRing1A=xE,yEifx=y1R0R
11 7 10 syl RRingEV1A=xE,yEifx=y1R0R
12 simpr RRingEVEV
13 fvex 1RV
14 fvex 0RV
15 13 14 ifex ifE=E1R0RV
16 15 a1i RRingEVifE=E1R0RV
17 eqid xE,yEifx=y1R0R=xE,yEifx=y1R0R
18 eqeq1 x=Ex=yE=y
19 18 ifbid x=Eifx=y1R0R=ifE=y1R0R
20 eqeq2 y=EE=yE=E
21 20 ifbid y=EifE=y1R0R=ifE=E1R0R
22 17 19 21 mposn EVEVifE=E1R0RVxE,yEifx=y1R0R=EEifE=E1R0R
23 12 12 16 22 syl3anc RRingEVxE,yEifx=y1R0R=EEifE=E1R0R
24 eqid E=E
25 24 iftruei ifE=E1R0R=1R
26 25 opeq2i EEifE=E1R0R=EE1R
27 26 sneqi EEifE=E1R0R=EE1R
28 23 27 eqtrdi RRingEVxE,yEifx=y1R0R=EE1R
29 3 opeq1i O1R=EE1R
30 29 sneqi O1R=EE1R
31 28 30 eqtr4di RRingEVxE,yEifx=y1R0R=O1R
32 11 31 eqtrd RRingEV1A=O1R