Metamath Proof Explorer


Theorem mat1dimid

Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A = E Mat R
mat1dim.b B = Base R
mat1dim.o O = E E
Assertion mat1dimid R Ring E V 1 A = O 1 R

Proof

Step Hyp Ref Expression
1 mat1dim.a A = E Mat R
2 mat1dim.b B = Base R
3 mat1dim.o O = E E
4 snfi E Fin
5 4 a1i E V E Fin
6 5 anim2i R Ring E V R Ring E Fin
7 6 ancomd R Ring E V E Fin R Ring
8 eqid 1 R = 1 R
9 eqid 0 R = 0 R
10 1 8 9 mat1 E Fin R Ring 1 A = x E , y E if x = y 1 R 0 R
11 7 10 syl R Ring E V 1 A = x E , y E if x = y 1 R 0 R
12 simpr R Ring E V E V
13 fvex 1 R V
14 fvex 0 R V
15 13 14 ifex if E = E 1 R 0 R V
16 15 a1i R Ring E V if E = E 1 R 0 R V
17 eqid x E , y E if x = y 1 R 0 R = x E , y E if x = y 1 R 0 R
18 eqeq1 x = E x = y E = y
19 18 ifbid x = E if x = y 1 R 0 R = if E = y 1 R 0 R
20 eqeq2 y = E E = y E = E
21 20 ifbid y = E if E = y 1 R 0 R = if E = E 1 R 0 R
22 17 19 21 mposn E V E V if E = E 1 R 0 R V x E , y E if x = y 1 R 0 R = E E if E = E 1 R 0 R
23 12 12 16 22 syl3anc R Ring E V x E , y E if x = y 1 R 0 R = E E if E = E 1 R 0 R
24 eqid E = E
25 24 iftruei if E = E 1 R 0 R = 1 R
26 25 opeq2i E E if E = E 1 R 0 R = E E 1 R
27 26 sneqi E E if E = E 1 R 0 R = E E 1 R
28 23 27 eqtrdi R Ring E V x E , y E if x = y 1 R 0 R = E E 1 R
29 3 opeq1i O 1 R = E E 1 R
30 29 sneqi O 1 R = E E 1 R
31 28 30 eqtr4di R Ring E V x E , y E if x = y 1 R 0 R = O 1 R
32 11 31 eqtrd R Ring E V 1 A = O 1 R