Metamath Proof Explorer


Theorem mat2pmatfval

Description: Value of the matrix transformation. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses mat2pmatfval.t T=NmatToPolyMatR
mat2pmatfval.a A=NMatR
mat2pmatfval.b B=BaseA
mat2pmatfval.p P=Poly1R
mat2pmatfval.s S=algScP
Assertion mat2pmatfval NFinRVT=mBxN,yNSxmy

Proof

Step Hyp Ref Expression
1 mat2pmatfval.t T=NmatToPolyMatR
2 mat2pmatfval.a A=NMatR
3 mat2pmatfval.b B=BaseA
4 mat2pmatfval.p P=Poly1R
5 mat2pmatfval.s S=algScP
6 df-mat2pmat matToPolyMat=nFin,rVmBasenMatrxn,ynalgScPoly1rxmy
7 6 a1i NFinRVmatToPolyMat=nFin,rVmBasenMatrxn,ynalgScPoly1rxmy
8 oveq12 n=Nr=RnMatr=NMatR
9 8 fveq2d n=Nr=RBasenMatr=BaseNMatR
10 2 fveq2i BaseA=BaseNMatR
11 3 10 eqtr2i BaseNMatR=B
12 9 11 eqtrdi n=Nr=RBasenMatr=B
13 simpl n=Nr=Rn=N
14 2fveq3 r=RalgScPoly1r=algScPoly1R
15 14 adantl n=Nr=RalgScPoly1r=algScPoly1R
16 4 fveq2i algScP=algScPoly1R
17 5 16 eqtr2i algScPoly1R=S
18 15 17 eqtrdi n=Nr=RalgScPoly1r=S
19 18 fveq1d n=Nr=RalgScPoly1rxmy=Sxmy
20 13 13 19 mpoeq123dv n=Nr=Rxn,ynalgScPoly1rxmy=xN,yNSxmy
21 12 20 mpteq12dv n=Nr=RmBasenMatrxn,ynalgScPoly1rxmy=mBxN,yNSxmy
22 21 adantl NFinRVn=Nr=RmBasenMatrxn,ynalgScPoly1rxmy=mBxN,yNSxmy
23 simpl NFinRVNFin
24 elex RVRV
25 24 adantl NFinRVRV
26 3 fvexi BV
27 mptexg BVmBxN,yNSxmyV
28 26 27 mp1i NFinRVmBxN,yNSxmyV
29 7 22 23 25 28 ovmpod NFinRVNmatToPolyMatR=mBxN,yNSxmy
30 1 29 eqtrid NFinRVT=mBxN,yNSxmy