Metamath Proof Explorer


Theorem mat2pmatrhm

Description: The transformation of matrices into polynomial matrices is a ring homomorphism. (Contributed by AV, 29-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmatrhm NFinRCRingTARingHomC

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 crngring RCRingRRing
8 2 matring NFinRRingARing
9 7 8 sylan2 NFinRCRingARing
10 4 ply1ring RRingPRing
11 7 10 syl RCRingPRing
12 5 matring NFinPRingCRing
13 11 12 sylan2 NFinRCRingCRing
14 1 2 3 4 5 6 mat2pmatghm NFinRRingTAGrpHomC
15 7 14 sylan2 NFinRCRingTAGrpHomC
16 1 2 3 4 5 6 mat2pmatmhm NFinRCRingTmulGrpAMndHommulGrpC
17 15 16 jca NFinRCRingTAGrpHomCTmulGrpAMndHommulGrpC
18 eqid mulGrpA=mulGrpA
19 eqid mulGrpC=mulGrpC
20 18 19 isrhm TARingHomCARingCRingTAGrpHomCTmulGrpAMndHommulGrpC
21 9 13 17 20 syl21anbrc NFinRCRingTARingHomC