Metamath Proof Explorer


Theorem mattposcl

Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses mattposcl.a A=NMatR
mattposcl.b B=BaseA
Assertion mattposcl MBtposMB

Proof

Step Hyp Ref Expression
1 mattposcl.a A=NMatR
2 mattposcl.b B=BaseA
3 eqid BaseR=BaseR
4 1 3 2 matbas2i MBMBaseRN×N
5 elmapi MBaseRN×NM:N×NBaseR
6 tposf M:N×NBaseRtposM:N×NBaseR
7 4 5 6 3syl MBtposM:N×NBaseR
8 fvex BaseRV
9 1 2 matrcl MBNFinRV
10 9 simpld MBNFin
11 xpfi NFinNFinN×NFin
12 11 anidms NFinN×NFin
13 10 12 syl MBN×NFin
14 elmapg BaseRVN×NFintposMBaseRN×NtposM:N×NBaseR
15 8 13 14 sylancr MBtposMBaseRN×NtposM:N×NBaseR
16 7 15 mpbird MBtposMBaseRN×N
17 1 3 matbas2 NFinRVBaseRN×N=BaseA
18 9 17 syl MBBaseRN×N=BaseA
19 18 2 eqtr4di MBBaseRN×N=B
20 16 19 eleqtrd MBtposMB