Metamath Proof Explorer


Theorem maxidln0

Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses maxidln0.1 G=1stR
maxidln0.2 H=2ndR
maxidln0.3 Z=GIdG
maxidln0.4 U=GIdH
Assertion maxidln0 RRingOpsMMaxIdlRUZ

Proof

Step Hyp Ref Expression
1 maxidln0.1 G=1stR
2 maxidln0.2 H=2ndR
3 maxidln0.3 Z=GIdG
4 maxidln0.4 U=GIdH
5 maxidlidl RRingOpsMMaxIdlRMIdlR
6 1 3 idl0cl RRingOpsMIdlRZM
7 5 6 syldan RRingOpsMMaxIdlRZM
8 2 4 maxidln1 RRingOpsMMaxIdlR¬UM
9 nelneq ZM¬UM¬Z=U
10 7 8 9 syl2anc RRingOpsMMaxIdlR¬Z=U
11 10 neqned RRingOpsMMaxIdlRZU
12 11 necomd RRingOpsMMaxIdlRUZ