Metamath Proof Explorer


Theorem maxs1

Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion maxs1 ANoAsifAsBBA

Proof

Step Hyp Ref Expression
1 slerflex ANoAsA
2 iffalse ¬AsBifAsBBA=A
3 2 breq2d ¬AsBAsifAsBBAAsA
4 1 3 syl5ibrcom ANo¬AsBAsifAsBBA
5 id AsBAsB
6 iftrue AsBifAsBBA=B
7 5 6 breqtrrd AsBAsifAsBBA
8 4 7 pm2.61d2 ANoAsifAsBBA