Metamath Proof Explorer


Theorem mdsldmd1i

Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 AC
mdslmd.2 BC
mdslmd.3 CC
mdslmd.4 DC
Assertion mdsldmd1i A𝑀BB𝑀*AACDCDABC𝑀*DCB𝑀*DB

Proof

Step Hyp Ref Expression
1 mdslmd.1 AC
2 mdslmd.2 BC
3 mdslmd.3 CC
4 mdslmd.4 DC
5 mddmd ACBCA𝑀BA𝑀*B
6 1 2 5 mp2an A𝑀BA𝑀*B
7 dmdmd BCACB𝑀*AB𝑀A
8 2 1 7 mp2an B𝑀*AB𝑀A
9 6 8 anbi12ci A𝑀BB𝑀*AB𝑀AA𝑀*B
10 3 4 chincli CDC
11 1 10 chsscon3i ACDCDA
12 3 4 chdmm1i CD=CD
13 12 sseq1i CDACDA
14 11 13 bitri ACDCDA
15 3 4 chjcli CDC
16 1 2 chjcli ABC
17 15 16 chsscon3i CDABABCD
18 1 2 chdmj1i AB=AB
19 incom AB=BA
20 18 19 eqtri AB=BA
21 3 4 chdmj1i CD=CD
22 20 21 sseq12i ABCDBACD
23 17 22 bitri CDABBACD
24 14 23 anbi12ci ACDCDABBACDCDA
25 2 choccli BC
26 1 choccli AC
27 3 choccli CC
28 4 choccli DC
29 25 26 27 28 mdslmd2i B𝑀AA𝑀*BBACDCDAC𝑀DCB𝑀DB
30 9 24 29 syl2anb A𝑀BB𝑀*AACDCDABC𝑀DCB𝑀DB
31 dmdmd CCDCC𝑀*DC𝑀D
32 3 4 31 mp2an C𝑀*DC𝑀D
33 3 2 chincli CBC
34 4 2 chincli DBC
35 dmdmd CBCDBCCB𝑀*DBCB𝑀DB
36 33 34 35 mp2an CB𝑀*DBCB𝑀DB
37 3 2 chdmm1i CB=CB
38 4 2 chdmm1i DB=DB
39 37 38 breq12i CB𝑀DBCB𝑀DB
40 36 39 bitri CB𝑀*DBCB𝑀DB
41 30 32 40 3bitr4g A𝑀BB𝑀*AACDCDABC𝑀*DCB𝑀*DB